Probing exciton localization/delocalization: transient dc photoconductivity studies of excited states of symmetrical porphyrin monomers, oligomers, and supramolecular assemblies.

نویسندگان

  • Chunxing She
  • James E McGarrah
  • Suk Joong Lee
  • Joshua L Goodman
  • SonBinh T Nguyen
  • J A G Williams
  • Joseph T Hupp
چکیده

Solution-phase transient dc photoconductivity (TDCP) measurements are used to address the question of exciton localization/delocalization in strongly coupled oligomeric porphyrins and in well-defined, higher-order assemblies of oligomers (ladder and prism assemblies). The approach used is determination of the excited-state excess polarizability volume, Delta alpha(V)--a quantity known to report on exciton delocalization. The measurements reveal for the oligomers that singlet excitons are substantially delocalized but that triplet excitons are much more localized. For each of the two higher-order assemblies, the measurements reveal that excitons are transiently confined to individual oligomeric subunits rather than being delocalized over the entire assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excess polarizability reveals exciton localization/delocalization controlled by linking positions on porphyrin rings in butadiyne-bridged porphyrin dimers.

We report direct measurements of the excess polarizability volumes of butadiyne-bridged zinc porphyrin dimers at singly beta-to-beta (1Zn) and doubly beta-to-beta (2Zn) positions using the transient dc photoconductivity (TDCP) technique. The excess polarizability volumes of the singlet exciton for 1Zn and 2Zn are 110 and 270 A(3), respectively, while those of the triplet exciton are approximate...

متن کامل

Excitation wavelength-dependent EPR study on the influence of the conformation of multiporphyrin arrays on triplet state delocalization.

The optoelectronic properties of conjugated porphyrin arrays render them excellent candidates for use in a variety of molecular electronic devices. Understanding the factors controlling the electron delocalization in these systems is important for further developments in this field. Here, we use transient EPR and ENDOR (Electron Nuclear Double Resonance) to study the extent of electronic deloca...

متن کامل

Transient EPR Reveals Triplet State Delocalization in a Series of Cyclic and Linear π-Conjugated Porphyrin Oligomers

The photoexcited triplet states of a series of linear and cyclic butadiyne-linked porphyrin oligomers were investigated by transient Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR). The spatial delocalization of the triplet state wave function in systems with different numbers of porphyrin units and different geometries was analyzed in terms of zero-field spl...

متن کامل

Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer.

Applying nonadiabatic excited-state molecular dynamics, we investigate excitation energy transfer and exciton localization dynamics in a chlorophyll a (Chla) dimer system at the interface of two monomers of light-harvesting complex II trimer. After its optical excitation at the red edge of the Soret (B) band, the Chla dimer experiences an ultrafast intra- and intermolecular nonradiative relaxat...

متن کامل

On the Influence of the Bridge on Triplet State Delocalization in Linear Porphyrin Oligomers

The extent of triplet state delocalization is investigated in rigid linear zinc porphyrin oligomers as a function of interporphyrin bonding characteristics, specifically in meso-meso singly linked and β,meso,β fused structures, using electron paramagnetic resonance techniques. The results are compared with those of earlier measurements on porphyrin oligomers with alkyne linkers exhibiting diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 29  شماره 

صفحات  -

تاریخ انتشار 2009